Signal Propagation between Neuronal Populations Controlled by Micropatterning
نویسندگان
چکیده
The central nervous system consists of an unfathomable number of functional networks enabling highly sophisticated information processing. Guided neuronal growth with a well-defined connectivity and accompanying polarity is essential for the formation of these networks. To investigate how two-dimensional protein patterns influence neuronal outgrowth with respect to connectivity and functional polarity between adjacent populations of neurons, a microstructured model system was established. Exclusive cell growth on patterned substrates was achieved by transferring a mixture of poly-l-lysine and laminin to a cell-repellent glass surface by microcontact printing. Triangular structures with different opening angle, height, and width were chosen as a pattern to achieve network formation with defined behavior at the junction of adjacent structures. These patterns were populated with dissociated primary cortical embryonic rat neurons and investigated with respect to their impact on neuronal outgrowth by immunofluorescence analysis, as well as their functional connectivity by calcium imaging. Here, we present a highly reproducible technique to devise neuronal networks in vitro with a predefined connectivity induced by the design of the gateway. Daisy-chained neuronal networks with predefined connectivity and functional polarity were produced using the presented micropatterning method. Controlling the direction of signal propagation among populations of neurons provides insights to network communication and offers the chance to investigate more about learning processes in networks by external manipulation of cells and signal cascades.
منابع مشابه
Micropatterning Co-cultures of Epithelial Cells on Filter Insert Substrates
A key feature of mature epithelium is the presence of an apical-basal polarization. In vitro this is achieved by culturing either pure populations of epithelial cells or unorganized mixtures of primary cell populations harvested from epithelial tissues in a filter insert culture system. In addition to epithelial cells however, multiple other cell types are also present in normal epithelium in a...
متن کاملSignal propagation along unidimensional neuronal networks.
Dissociated neurons were cultured on lines of various lengths covered with adhesive material to obtain an experimental model system of linear signal transmission. The neuronal connectivity in the linear culture is characterized, and it is demonstrated that local spiking activity is relayed by synaptic transmission along the line of neurons to develop into a large-scale population burst. Formall...
متن کاملNanofabrication of nonfouling surfaces for micropatterning of cell and microtissue.
Surface engineering techniques for cellular micropatterning are emerging as important tools to clarify the effects of the microenvironment on cellular behavior, as cells usually integrate and respond the microscale environment, such as chemical and mechanical properties of the surrounding fluid and extracellular matrix, soluble protein factors, small signal molecules, and contacts with neighbor...
متن کاملMicropatterning strategies to engineer controlled cell and tissue architecture in vitro.
Micropatterning strategies, which enable control over cell and tissue architecture in vitro, have emerged as powerful platforms for modelling tissue microenvironments at different scales and complexities. Here, we provide an overview of popular micropatterning techniques, along with detailed descriptions, to guide new users through the decision making process of which micropatterning procedure ...
متن کاملRain Attenuation Prediction at Ku Band Using Satellite Signal Beacon Measurement in Iran
In this paper satellite wave propagation at Ku and Ka band is considered. The design and simulation of a typical satellite beacon receiver at Ka band is designed and simulated for the future works. Also rain attenuation prediction at Ku band using satellite signal beacon measurement and simulations for Iran Telecommunication Research Center (ITRC) are presented. The measurement setup consists o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2016